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Abstract

We discuss multivariate interpolation with some radial basis function, called radial basis
function under tension (RBFT). The RBFT depends on a positive parameter which provides a
convenient way of controlling the behavior of the interpolating surface. We show that our
RBFT is conditionally positive definite of order at least one and give a construction of the
native space, namely a semi-Hilbert space with a semi-norm, minimized by such an
interpolant. Error estimates are given in terms of this semi-norm and numerical examples
illustrate the behavior of interpolating surfaces.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Multivariate interpolation and approximation with radial basis functions have
been comprehensively reviewed in several recent papers (see [4,16,17] among others),
and it is sufficient here to roughly mention how it works.
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A radial function @ on R? is defined through a univariate function ¢ : [0, o0 ) - R
in such a way that @(x) = ¢(||x||*) where ||.|| is the usual Euclidean norm in R’
Interpolation at N scattered points in R? can be carried out using translates of the
function @ to generate a linear space of interpolating functions. The usual radial
basis functions are thin plate splines [5] where ¢(¢) = ¢ In \/z, Hardy’s multiquadrics
[10] with ¢(7) = V7 + ¢ and inverse multiquadrics with ¢(1) = (V7 + 2)"", as well
as the Gaussians with ¢ () = e~

This paper discusses interpolation of real-valued functions on a finite set of
scattered data in R? by a linear combination of translates of a radial function which
depends on a positive parameter that allows us to control the behavior of the
interpolating surface, and gives a generalization of the well-known univariate spline
under tension [19]. The problem of interpolation by a surface involving the concept
of tension goes back to Franke [7,15]. His construction of the thin plate spline with
tension is similar to the construction of the thin plate splines by Harder and
Desmarais [9]. Unfortunately, this approach does not lead to a simple representa-
tion. On the other hand, the radial basis function we present here has an elementary
representation and allows also the control over the behavior of the interpolating
surface and provides nice geometrical tension effects. Our construction is based on a
variational formulation, but, unlike Franke’s one, we cannot assign a physical
meaning for the tension parameter. For another approach of surface splines with
tension which models a physical process, but with a more complicated basis function,
we refer to [1-3].

In Section 2 we briefly review some properties of spline curves under tension, with
a new formulation, as they are considered here as univariate radial basis functions,
providing a slight modification of the usual ones [19]. In Section 3 we discuss some
generalizations to the multi-dimensional case and the variational problem with the
construction of the corresponding semi-Hilbert space with minimization of the semi-
norm. The limit cases and error estimates are given in Section 4. We conclude this
paper by some numerical examples illustrating the effect of tension and the
performances of the interpolant for surfaces.

2. Splines curves under tension

We first briefly review some properties concerning univariate splines under tension
(for more details on this approach, see [1-3]). This presentation differs quite a bit
from the usual definition, but provides a framework for a generalization to higher
dimension, as we will see thereafter.

Let 2'(R) denote the space of distributions on R, let >0 be a real number and let
A be the subspace of Z'(R)

H ={ue?' (R); v and " e *(R)} (2.1)
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endowed with the semi-scalar product

wuyﬁ:/+xwun%gm+4{/+wwan%gm, (2.2)

o0 — 00
and the associated semi-norm [u|,. The real parameter t is called a tension
parameter. Let €(R) and I1y(R) be the space of continuous functions and the space
of constant polynomials on R, respectively. The space # is a semi-Hilbert subspace
of €(R) (see [1-3]) and its null-space is I1p(R).

Let 2. be the linear differential operator defined on Z'(R) by Z.(.) = % - rzdjl(ﬁ.
For any ue # and any compactly supported infinitely differentiable function ¢ on
R, we have (u|p), = {Z.u,¢) = {u,Z.¢). A fundamental solution @ of the
linear differential operator &, is a tempered distribution on R such that, in the
distributional sense

G =6, (2.3)

as usual, J denotes the Dirac’s measure at the origin. It is obvious that such a
fundamental solution cannot be unique (at least up to a polynomial of degree 1). It is
easy to find out that a fundamental solution for the linear differential operator &, is

1 -7
anjﬂew+wu (2.4)

Let us notice that & is a function of class %(R) which generates a tempered
distribution that we still denote by @. We have [1-3]:

Theorem 1. Let {(t1,/1), ..., (tn.fn)} =R* be any set of real data with t;#1; for i#j,
let @ be the function given by (2.4). Then, there is a unique function s, € # minimizing
the semi-norm | .|, of #, subject to the interpolation constraints s.(t;) = f; for i =
1,...,N. The function s has explicitly the following form:

N
Sr(l) = Z l,‘@(l - l,’) + Ani1, (25)
=1
where the coefficients 11, ..., Ay41 are solutions of the nonsingular linear system
@(Z] —Z]) ds(l‘l —IN) 1 Al f]
: . : : : N 26
Pty — 1) - Pty —ty) 1 AN I (26)
1 1 0 AN+ 0

Let €'(R) be the dual space of ¢(R), namely the space of compactly supported
Radon measures and let Ty (R) be the subspace orthogonal to TIy(R) in the
distributional sense. The semi-Hilbertian kernel of # is the mapping H :
%'(R) Iy (R) - # such that H(u) = u+ @ for ued'(R)nIy (R). According to
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[18], this semi-Hilbertian kernel satisfies
o0y = [ [ 0= duto) duts) >0,

for all Radon measures u compactly supported and such that [du(r) = 0.

Specifically, given any set of p distinct points xi, ...,x, in R and any discrete
measure y = Zlec,-éxi such that Zleci =0 (Jy, is the Dirac’s measure at x;), we
have 7 377 cic;®(x; — x;) >0. Therefore (see Section 3), the function @ is a
conditionally positive definite function on R of order 1.

3. Multi-dimensional case

Let m>=1 be a positive integer and let IT,,_; (Rd ) denote the space of polynomials
on R? of degree at most m — 1 whose dimension is denoted d(m).

Let us give an arbitrary finite set .7 = {x;, ..., xy} < R? of distinct interpolation
points and a set of real data {fi,...,fy}. We assume that N>d(m) and that o/

contains a IT,,_; (RY)-unisolvent set (i.e., if peIl,,_;(R?) and if for all ae.«Z, p(a) =
0, then p = 0). Let (g1, ..., qa(m)) be a basis of I, (RY) and || . || be the Euclidean
norm on RY. We consider the following function:
1
¢‘E(t) = T

and the following radial function

(e ™V +1V1), 1eR", (3.1)

. (x) = ¢.(||xI) = —% (e M+ f|x]]),  xeR?. (3:2)

Let
Ar = (P(xi — X)) <;j<n be @ N x N matrix,

M = (gj(x;)) 1<i<y be a N x d(m) matrix, M denotes the transpose of M,

1<j<d(m)
O be the d(m) x d(m) zero matrix,
A= (A, ....on) and £ = (fi,....fw)" two vectors of RY,
and o = (o, ...,acd<m))T be a vector of R,

We consider a function s, ,, of the following form:

N d(m)
Seram(X) =Y Lie(x = xi) + Y 05g;(x), xeR. (3.3)
i=1

=1

The interpolation conditions s...(x;) =f;, for j=1,...,N together with the
constraint Zfil Zip(x;) = 0, for all pell,,_,(R?) provide a linear system, similar to
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(2.6) obtained for the univariate case. The coefficients /; and «; are solutions of
A. M\ (4 f ) A+ Mo = f,
T = ’ 1.c. T (34)
M* O o 0 M*' A = 0.

Remark 1. The factor % which appear in (3.1) and (3.2) may be omitted, because it
will be absorbed in the coefficients of the first linear combination of the right-hand
side of (3.3). In one dimension this factor is only obtained to satisfy condition (2.3).
Furthermore, according to our numerical experience, the RBFTs have the same
behavior using the radial function @, with or without the factor 217 In this paper, we

consider the radial function @, as it is written in (3.2), i.e. with the factor 2%3

From [14], a sufficient condition for the linear system (3.4) to be nonsingular for
any set of interpolation data points is for @, to be a conditionally strictly positive

definite function of order m on R?. We recall the following

Definition 1. A continuous real valued function F defined on R? is conditionally
positive definite of order m on R?, if for any positive integer p, any set of points

X1, .oy Xp€ R? and any real-vector ¢ = (c, ..., ¢p) € R such that Y7 ¢;x* = 0 for all
|oe| <m, we have
pp
Z Z C,‘CJ‘F(X,' — X/) 20 (35)
=1 j=1

When the right-hand side of (3.5) is >0, with ¢#0 and for any configuration of
points, the function F is conditionally strictly positive definite of order m on RY.

The following theorem of Micchelli [14] (completed by Guo et al. [8]) gives a nice

characterization for radial functions to be conditionally positive definite on R for all
integer d > 1:

Theorem 2 (Guo et al. [8], Micchelli [14]). Given g : [0, o) — R, the radial function
G(x) = g(||x||) is a conditionally strictly positive definite function of order m on R? for
all integer d=1 if and only if ge %[0, 0) € (0, o0) and

(_1)m+kg(m+k)(l«)>07 forall t>0 and k=0,1,2, ...

We obtain the following:

Theorem 3. The function ®, defined on R by
1
@.(x) = =55 (¢ + 1]

is conditionally strictly positive of order m=1 on R? for all integer d>1.
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Proof. It is obvious to see that the function ¢, given by (3.1) belongs to
%[0, 0) €~ (0, 00). In order to obtain the result, we only have to prove that the
function ¢, satisfies the condition (—1)k¢§k)(t)>0 for all £>0 and for all integer
k>1. Let co1 = 1, Cop =Clp = I, co3 = 13 = 1 and 3= %, then for t>0 we
successively have

1
/ _ /1 _
¢, (1) = 2212t e co.1],
@) ! i i
d)r (t) = 23‘L_2l3/2e1_\/;[e - C()_Q - cl,Z(T Z)]7
13 (V1)
O A S DR V/ _ .
b (1) = S g [e o3 —c13(TVI) — 23 |

By induction, we suppose that for all integer k> 1, there exists coefficients c;
satisfying 0 <c¢jx <1 for j =0, ...,k — 1, such that

o0 (1) = (—=D)"(1.3...(2k — 3)) eT\/}_kfl . (Vi)
T T k1 24(2k-1) /2t i ke i

], Vi>0. (3.6)
=0

Calculating the derivative of ¢§">, we obtain

k+1 k—1 j
(=D N(1.3...(2k — 3)(2k — 1)) [N - chﬁk(f;{zy

(k1) _
(1) = 2k+272{(2k+1) /2011 —t
=

_k—l Cjk (r\/f)j+l+kz_i Gk (T‘ﬁy], Vi>0. (3.7)
=1

S 2k—1 ! 2k—1(j— 1)
Setting
Cok+1 = Cop =1,
o = (1=t Vet -t for 1<j<k —1
Jk+1 = e — 1 Cjk + 2 — 1¢/—1,k; or lgjs s
. ko k!
Y A T T Y S Dk

expression (3.7) may be arranged in the following form:

k+1 k j

ki) D3k (Y

¢ () = Y2k 2t |€ Z 5 ke gl vi>0. (38)
J=

Since 0<¢;r<1 we also obtain 0<cjzy<1. Thus (—1)k¢£k)(t)>0, for all >0,
therefore @, is conditionally strictly positive definite function of order m>1. O

Now, we will discuss the associated variational problem with the construction of
the corresponding semi-Hilbert space with minimization of the semi-norm.

Let %(R?) be the space of continuous functions on R?, let 4’(R) denote the
topological dual space of ‘K(R"), which is the space of all compactly supported
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Radon measures on R? and let ;Em = ¢(RY)/I1,,_; (R?) be the quotient of the space
%(R?) by I1,,_ (R?). The quotient space l.?m is a locally convex topological vector

space and its topological dual E’, is naturally isomorphic to the space of all

compactly supported Radon measures which are orthogonal, in the distributional
sense, to I1,,_; (Rd). Then both spaces can be identified and we can write

E'\,) = {MG%'(R‘[): /x“ du(x) =0 for all |oc|<m}
We directly obtain from [12,13] and [18]

Theorem 4. There is a unique semi-Hilbert subspace H . ,, of € (RY) equipped with a
semi-inner product (.|.),, —and its associated semi-norm | .|, such that

(1) The null-space of (H v m,| - L., is I, (RY).
) f%r,m = H o/ T_1 (RY) equipped with the scalar product (it|v) . = (ulv) . is

a Hilbert space continuously embedded in E,,.

3) . . —_—
The mapping H : E',,— E,, defined by Hu= ux* ®, is the unique Hilbertian

[ ] L]
kernel of S, with respect to E,. Furthermore, these properties uniquely

delermil/le %‘[,m and (' | ')”z.m.

Remark 2. We note that the space #. ,, and its semi-inner product (. |.),, , givenin
Theorem 4, depend on the parameter 7, so the subscript 7 attached to the notations is
to emphasize this dependence. The space #,, is described in Theorem 4 using a
Hilbertian kernel tool. An explicit construction of this space, as a Sobolev space
type, unless for d =1 is not easy to carry out here. Some investigations in this
direction are in progress.

Since .o/ contains a Hm,l([R{d)—unisolvent set, then the following bilinear form:

Culpy 4, = (ulv) .+ Z u(a)v(a), for wu,veH,, (3.9)

ae.of

is an inner product on . ,. We directly obtain from Theorem 4 and the closed
graph theorem, the following
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Corollary 1. The space H ., with the inner product (3.9) and the associated norm
denoted by ||u|| . is a Hilbert subspace of € (RY), continuously embedded in €(R?)

(that is ., is a Hilbertian subspace of € (RY) in the sense of Schwartz).
We can now state the following main theorem

Theorem 5. Let N be an integer such that N =d(m), let us give an arbitrary finite set
o ={x1,...,xy} of distinct points in R? and a set of real data {fi,....fx}. We
assume that </ contains a l'[m,l(le)—unisolvent. Then, there exists one and only one
JUNCtion Sy, in A, satisfying the interpolating conditions S m(x;) = f; for i =

., N and minimizing the semi-norm | . |,/ It has the form shown in (3.3) while the
coefficients J;, 05, for i=1,....,N+1 and j=1,...,d(m) are solutions of the
nonsingular linear system (3.4).

Proof. (a) Existence and unicity: Since, Dirac’s measure J,, at the point x; is a linear
continuous functional over (e, ||. |4, ), it follows that the set /; = {ue #'¢, :
ulx;)) =fit = 5;1{]3}, fori=1,...,N,is a closed subset of (# |||, ). Then,
the set I, = ﬂf\il L={ueA, ulx;)=fi,i=1,...,N} is also a closed subset of
(# em || - 1|4, ) and it is obviously a convex set. Now by the projection theorem we
obtain existence and uniqueness of the projection of 0, on I,,, which is the unique
element of /., of minimal semi-norm |. |, . Let us call 5./ ., this unique element.

(b) Form of the solution: We have {s. :m|u) ,. = 0forallue #, vanishing on
</, which also implies that (s,;,/’”,1|u)%_m =0 for all ue s# , vanishing on . Let us
choose an arbitrary set of functions L;€ #,,, such that L;(x;) =1 and L;(x;) =0
for all j#i. For any ve #., the function u=v— ZLU(X,-)L[ vanishes on .7,
therefore (s./,cmlu) ., =0, and so

N

N
(s,o/,r,m|v),7ﬂ.,,, = Z( S/ tm ‘L HoopV xl Z xl = <,u7 U>7 VUE%r,m,
i=1 =1

where u = vazl 2i0y, and A; = (s&g/7rﬂ,,1|L,~)e#m. The support of pis .o and {u,q) =

(Seszmlq) . =0, VgeTIl,, (RY). Then, using Theorem 4, we can write {p,v) =

r m

° [ ——
(v |H,u)(;f =(v|u=* d)f)}-{/ = (v|u * ‘DT)JKW’ Yve A, Therefore, (S om— px*

@r\v)%m =0, Yve A# ', then there is a polynomial p such that 5./, = u* &, + p.

(c) The nonsingularity of the linear system (3.4) comes from Theorem 3.7 in [16]
and the conditionally strictly positive definiteness of &,. [
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4. Error estimates and limit cases

In this section, we first give an estimation of the local error of interpolation. Let Q
be an open subset of RY. We say that Q satisfies the cone property if there exist >0
and 0> 0 such that for any 7€ Q there exists a unit vector £(¢)e R? such that the cone

(6, E(0),0,7) = {1+ dt, pe Y |Jul| = 1, uol(1) > cos 0,0< /< r}

is entirely contained within Q.

Theorem 6. Let Q be an open, bounded connected subset of RY having the cone
property. For any h>0, let o/}, be a finite subset of distinct points in Q which contains a
Hm_l([Rd)-unisolvem subset with sup,_ginfac.y, ||t — a|| = h. For each feH ., let
Set,om be the unique element of A . ,, of minimal semi-norm | .| > which coincides
with f on /). There exists a constant ¢>0, independent of h and t, such that

(%) = Sy 2 ()] <% Wl . forall xeQ.

Proof. The set Q is an open, bounded connected subset of RY having the cone
property. Then, a direct application of Theorem 3.6 in [11] proves that there exists
ho >0 and constants ¢y, c» >0, both independent of & and ¢, (this implies that ¢; and
¢, do not depend on 1), such that

1

g 2 2 —1t 2
() = sppem@)F 556 max (e w1 If,,

for all xeQ and h<hy. Now,

max |e™" + ot — 1< (reah)’.
0<t<erh

Setting ¢ = <52 gives the required result. [J

Remark 3. The error estimate given by Theorem 6 suggests, as expected, that the
pointwise error goes to 0 as #— 0, namely the pointwise error goes to 0 when .7,
becomes more and more dense in an open set Q. Unfortunately, it does not give any
hint of what happens when the parameter t goes to 0 or to oo, because of the factor
f|,»., which depends on 7 and whose behavior with t is unknown.

It is why we now investigate the behavior of the radial basis function under tension
when t7—0 or 71— o0. We first recall two examples of pseudo-polynomial
(m,s)—splines [6]. Let m be an integer and s a real number such that —m +
§<s<‘§1, which is the required condition for the space of pseudo-polynomial splines

to be a subspace of continuous functions on R?. The generating radial basis function
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of (m, s)-splines is

Cons|[x|[P" > In(||x||)  if 2m + 25 — d € 2N*,
Ks(x) = ’

, 4.1)
Cm,s| \X| |2m+237a'

else,
where C,,; is a known constant. The function K, ; generates a tempered distribution
on R? also denoted by K, s satisfying on R? the relation

A"*K,,s =9 (Dirac’s measure at the origin), (4.2)

where A”** is the Laplace operator of order m + s, with an appropriate extension of
the usual iterated Laplacean operator to a real order, whenever s is a non integer
number (see [3]).

Remark 4. Let us recall that the function given by (4.1) can be replaced by any other
function which generates a tempered distribution on R? satisfying, up to a
multiplicative factor, relation (4.2).

Let (qi,...,qar1) be the canonical basis of IT;(R?), with ¢;(x) = x(/) for j =
1,....d and g1 (x) = 1 where x = (x(), ..., x()T e R?. We consider here two of the
(m, ) splines. The first one is for m=1 and s=(d —1)/2. We obtain the
(1,(d — 1)/2)-spline which, in this case, is the pseudo-linear spline of the form
00 (x) = 32N ail|x — xi|| + an1, subject to S | @; = 0. For the second example, we
choose m =2 and s = (d — 1)/2 again. We obtain the (2, (d — 1)/2)—spline which, in
this case, is the pseudo-cubic spline oo(x) = 32N bi||x — x| + 3297 ¢iqi (x), with
the condition Zf\;lbip(xi) =0, Ypell;(RY). Another interesting case of (m,s)—
spline is obtained for the choice m =2 and s=(d —2)/2, in this case, the
(2.(d—2)/2)spline is given by ope(x) = X, dilfx — x| In(l[x — xil[) +
Zfiﬁl eiq1(x), with the condition SN dip(x;) = 0, Vpell;(R?). In particular, we
obtain in R? the well-known thin plate spline (TPS), the term of TPS being justified
by the fact that, in two dimension, the (2,0)-spline models some physical properties
of thin plate. In the literature, many authors use also the term of TPS, for any d >2.

Proposition 1. Let o/ = {xi,...,xy} be a finite set of distinct points in R? which
contains a Hl([Rd)-unisolvent subset, let f = (f1, ...,f}v)Te[R{N and let 6y and ¢, be
respectively the pseudo-cubic and the pseudo-linear splines satisfying the interpolating
conditions 60(X;) = 0o (X;) = Se7201(Xi) = Sy 2(X;) = fi fori =1, ...,N. Then, for all
xeR9, S 22(X) converges to ag(x) as T—0 and 5.7 . 1(x) converges to 7., (x) as T— 0.

Proof. Let ¥, (x) = —555(1 + 1| |ex|* — Y |ex||). For a fixed xe R, by expanding the
function @, given by (3.2) we obtain
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The function s, ., is given by s, .2(x) = Zl | i@ (x — X;) +Zl : oc,fq,( ), it
follows that

'MZ

5%12 - X,
i=1
d+1 N Z ,
—1||x — x;
+ 8wt 135 4 (Z M) “3)
= i=1 k=4 ’
Let
& (=l = )
E = (F;+ e B = (Ye(xi — X)) 1 <ij<n
— I<ij<N

and 4 = (||x; — xj||3)1<i,j<N be the N x N matrices. The matrix 4, given in the linear

system (3.4), may be written as A, = B. + E;. We have ||E;||,,—0 as t—0 and

liz ~0V”’ for i=1,...,N and ;. ~0ﬁj‘f for j=1,...,d + 1, where the vectors
T : T -

Yr = (yl,-w cee yN,r)T and ﬁ‘r = (ﬁl,rv cee ﬁd+l,‘r)T are obtained by SO]Ving the fOllOWil’lg
nonsingular linear system:

By, +Mp, =
{ e+ MP / as 0. (4.4)
MTy. =0

The nonsingularity of the linear system (4.4) is guaranteed by the fact that the
function ¥, also generates a tempered distribution on R? which is, up to a
multiplicative factor, a fundamental solution of the operator A" for m =2 and

d—1 d—1 5
s=(d— 1)/2 In fact we have ALTJ+2[1 x| = AL A2 (1 2] =

thus A ) 'I/ = 12A ) [||x|| |= d (5 where C J—1 1s given in (4.1).
a—1 2, 2
2

2,
Let Bry, = ((Beye)ps ---s ( Ty,)N) we have

';
3
B, Z/” x)= 232y,f[l+ oy =6l = g — x|

Since ||x; — xi||? = ||x‘,‘||2 - 2x/Tx,» +||x;|]* and together with the orthogonality
conditions YN | 7:- =0 and >y 7:.Xi = 0, we obtain that

1 N
tyr Z /l‘c |x] xl|| ‘E’ Where 9‘5 == Z yi.TfoHz'
12 4t

Let egyy = (0,...,0,1)7, b, = 7. and ¢; = B, — O:eq41, it follows that the linear
system (4.4) becomes
{ Ab, + Mc, = f,

4.5
MTh, = 0. (4:3)
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The coefficients b, and ¢, obtained by solving the nonsingular linear system (4.5) are

exactly the coefficients b = (b1, ...,bN)T and ¢ = (cy, ..., cd+1)T of the pseudo-cubic
spline o satisfying the interpolating conditions ao(x,) =fifori=1,...,N.It follows

that b ~ b ¢ ~ cand 0 ~ 9 =35, bil|xi||%, which gives

g

e ~ 126 and o, ~ C+0€d+1 (4.6)

-0 -0

From (4.3), again by using the relation ||x — x;||* = ||x]|* — 2xTx; + ||x;||* together
with the orthogonality conditions S>>~ | Z;- = 0 and SN, 4;.x; = 0, we obtain
d+l

Sy/rZ 122A,T||X xl|| +Z szr%
1 2, 1 (—tfx — ]
- P+ — S 4 Sl e ali PR 4,
. ; lt,r”xlll + 203 ; it <k_4 A ( 7)

Therefore, using (4.6), we obtain

d+1 w Nk
So22(X Zbe—x,H +Z ciqi(x 632@(2 (T||xk'x,||)>’

i=1 k=4
namely,
k
o) ey 3 (30 ),
=1 k=4 :
On the other hand, when t— co, we get ¢T(x)r:w @, (x) = —||zx|| and we have
@, = cK 4. Then by a similar argument, we obtain that s 1 (x) 0w (x). O

2

5. Numerical examples

In order to illustrate the behavior of the interpolant with our radial basis function
under tension (RBFT), we include some examples. We fix d =2 and we choose
m =1 and 2, respectively. The first example is the interpolation with RBFT at
Franke’s data which are scattered data points x; = (s, ;) in the unit square [0, 1] x
[0,1] and f; for i =1, ..., N = 33 are given values in R. The Franke’s data are taken
from Franke [7] and Franke and Nielson [15, Table 1], they were used by the authors
for testing their method of construction of interpolant surfaces with the concept of
tension.

Figs. 1 and 2, show the behavior of the RBFT interpolating the Franke’s data for
small (r =0.1), middle (r = 50) and large (r = 1000) values of the parameter of
tension with m = 1 and 2, respectively. In order to have a comparison between the
RBFT and the pseudo-polynomial splines, we gave, in Fig. 3, the plots of the thin
plate spline, pseudo-cubic spline and pseudo-linear spline interpolating the same
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RBFT with 1= 0.1 N=33 m=1 RBFT with t=50 N=33 m=1 RBFT with ©=1000 N=33 m=1
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Fig. 1. RBFT interpolating the Franke’s data with N = 33 and m = 1.
RBFT with 1= 0.1 N=33 m=2 RBFT with 7=50 N=33 m=2 RBFT with ©=1000 N=33 m=2
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Fig. 2. RBFT interpolating the Franke’s data with N =33 and m = 2.
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Pseudo-cubic N=33 Thin plate spline N=33 Pseudo-linear N=33
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Fig. 3. Pseudo-polynomial splines interpolating the Franke’s data with N = 33.

Franke's test function

Contour of Franke's test function
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Fig. 4. Franke’s test function and its contour.

data together with RBFT. This example illustrates the practical effects of the
parameter t of tension on the behaviour of the surface.

The second example is the interpolation of the usual well-known test function [15],
given below. Fig. 4, shows the plot of the test function

(9x—2)*+(9y—2)° (9x—1)> (9y—1)
fx,p) =3¢ 7 tiem ® T _%ef<9x74>2—<9y77>2
Ox=7+(9y-3)*
tle T

We randomly generated scattered data points x; = (s;,¢;) for i =1, ..., N in the
unit square domain [0, 1] x [0, 1] and test the interpolation of the test function for
different values of t and different number N of scattered data points. For the sake of
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RBFT with t=0.1 N=35 m=1 RBFT with 1= 50 N=35 m=1 RBFT with t=1000 N=35 m=1
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Fig. 5. RBFT interpolating f with N =35 and m = 1.

RBFT with 1= 0.1 N=35 m=2 RBFT with t=50 N=35 m=2 RBFT with t= 1000 N=35 m=2
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Fig. 6. RBFT interpolating /" with N = 35 and m = 2.

brevity, we gave here only two values of N, one of a small value (N = 35) and the
other one of a large value (N = 2000). We chose the values of the parameter of
tension, to be small (r = 0.01), middle (t = 50) and large (r = 1000), respectively.
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RBFT with t=0.1 N=2000 m=1
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Fig. 7. RBFT interpolating f with N = 2000 and m = 1.
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Fig. 8. RBFT interpolating f with N = 2000 and m = 2.

Figs. 5 and 7, on one hand, and Figs. 6 and 8 on the other hand, show the behavior
of the RBFT interpolation for m = 1 and 2, respectively.

We observe that in both cases (m = 1 and 2), the RBFT behave like the pseudo-

cubic spline when 1 is small, and like the pseudo-linear spline for large value of 7. We
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RMS error between the RBFT (with m=1, N=25) and

RMS error between the RBFT (with m=1, N=50) and
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Fig. 9. RMS errors between the RBFT (with m = 1) and the test function, together with the pseudo-
polynomial splines.

have noticed that the parameter T does not have any visual effect when N becomes
large, which is a direct consequence of the fact that the RBFT, like the pseudo-
polynomial splines, converges to the underlying function f when the set of the
interpolating points becomes more and more dense in an open set 2, which is the
main assertion of Theorem 6. As we were able to observe, there is only a slight
difference between the two cases m =1 or m = 2. Choosing m = 1 or m = 2, does
not either seriously affect the behavior of the RBFT nor seriously modify the
accuracy of the interpolation.

In order to provide some additional light on the effects of the parameter 7, we
examined the root-mean-square (RMS) errors between the RBFT and the function
test together with the pseudo-polynomial splines, for various value of 7. We choose
an uniform grid of n = 100 x 100 points (u;, v;) on [0, 1] x [0, 1], the RMS(g, h) error
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RMS error between the RBFT (with m=2, N=25) and

RMS error between the RBFT (with m=2, N=50) and
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Fig. 10. RMS errors between the RBFT (with m = 2) and the test function, together with the pseudo-
polynomial splines.

between two functions g and % is computed at the grid points by

(RMS)(g,h) = \/% D gl o) — hlu, ).

In Figs. 9 and we have plotted, the root-mean-square errors
T (RMS)(f S 2m), 7= (RMS) (00,87 2m), T (RMS) (0o, Setem) and
T— (RMS)(01ps, S.z,e.m) as functions involving the values of 7, where S/ m, 60, 0o
and oy, are the RBFT, the pseudo-cubic, the pseudo-linear and the TPS
interpolating the test function f on a same set .7 of N scattered data points. The
value of the parameter 7 is incremented from 0.1 to 50 and the curves of Figs. 9 and
10 are computed point by point. We observe that, (RMS)(0o,Svm) and
(RMS)(0,S8::m) become more and more small as v becomes more and more
small and large, respectively.

10,
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Table 1

The RMS error for RBFT with optimal ©

N Toptimal RMS error N Toptimal RMS error
25 0.01 3.8711e-2 25 0.01 3.8710e-2
50 11.01 1.4703e-2 50 10.51 1.4606e-2
100 0.01 4.6971e-3 100 0.01 4.6963¢-3
1000 6.011 6.8685¢-5 1000 6.01 4.6449¢-5
Table 2

The RMS error for Pseudo-polynomial splines

Pseudo-cubic Thin plate Pseudo-linear

N RMS error N RMS error N RMS error
25 3.8709e-2 25 4.9840e-2 25 7.2336e-2
50 2.2211e-2 50 1.7708e-2 50 3.4302¢e-2
100 4.6955¢e-3 100 1.2055e-2 1000 2.9474e-2
1000 2.3199¢-4 100 1.8331e-4 1000 1.9306e-3

A critical problem using the RBFT method is obviously in the evaluation of an
optimal tension parameter 7 or at least to find a way which allows the user to choose
a suitable value of the tension parameter in order to obtain an expected behavior for
the resulting surface. This certainly depends on the geometry of the scattered data
interpolating points. It seems also that some cross validation technique might help in
this case and this will be investigated elsewhere. The Table 1 gives an experimental
estimation of the optimal tension parameter 7oy together with the corresponding
(RMS)(f, 8 205,m) €rror. The Table 2, gives the (RMS)(f,09), (RMS)(f,0) and
(RMS)(f,o1ps) errors for the pseudo-polynomial splines. We observed, that the
RBFT with the empirical optimal value of the parameter 7 has a better RMS error
than the pseudo-polynomial splines. It is also interesting to note that there is a value
of 7 for the (RMS)(01ps, Se7.2m) 11O to be minimal, namely there is a value of = such
that the RBFT gives a “best approximation” of the TPS.
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