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Abstract

We discuss multivariate interpolation with some radial basis function, called radial basis

function under tension (RBFT). The RBFT depends on a positive parameter which provides a

convenient way of controlling the behavior of the interpolating surface. We show that our

RBFT is conditionally positive definite of order at least one and give a construction of the

native space, namely a semi-Hilbert space with a semi-norm, minimized by such an

interpolant. Error estimates are given in terms of this semi-norm and numerical examples

illustrate the behavior of interpolating surfaces.
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1. Introduction

Multivariate interpolation and approximation with radial basis functions have
been comprehensively reviewed in several recent papers (see [4,16,17] among others),
and it is sufficient here to roughly mention how it works.
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A radial function F on Rd is defined through a univariate function f : ½0;NÞ-R

in such a way that FðxÞ ¼ fðjjxjj2Þ where jj : jj is the usual Euclidean norm in Rd :

Interpolation at N scattered points in Rd can be carried out using translates of the
function F to generate a linear space of interpolating functions. The usual radial

basis functions are thin plate splines [5] where fðtÞ ¼ t ln
ffiffi
t

p
; Hardy’s multiquadrics

[10] with fðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t þ c2

p
and inverse multiquadrics with fðtÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
t þ c2

p
Þ	1; as well

as the Gaussians with fðtÞ ¼ e	c2t:
This paper discusses interpolation of real-valued functions on a finite set of

scattered data in Rd by a linear combination of translates of a radial function which
depends on a positive parameter that allows us to control the behavior of the
interpolating surface, and gives a generalization of the well-known univariate spline
under tension [19]. The problem of interpolation by a surface involving the concept
of tension goes back to Franke [7,15]. His construction of the thin plate spline with
tension is similar to the construction of the thin plate splines by Harder and
Desmarais [9]. Unfortunately, this approach does not lead to a simple representa-
tion. On the other hand, the radial basis function we present here has an elementary
representation and allows also the control over the behavior of the interpolating
surface and provides nice geometrical tension effects. Our construction is based on a
variational formulation, but, unlike Franke’s one, we cannot assign a physical
meaning for the tension parameter. For another approach of surface splines with
tension which models a physical process, but with a more complicated basis function,
we refer to [1–3].

In Section 2 we briefly review some properties of spline curves under tension, with
a new formulation, as they are considered here as univariate radial basis functions,
providing a slight modification of the usual ones [19]. In Section 3 we discuss some
generalizations to the multi-dimensional case and the variational problem with the
construction of the corresponding semi-Hilbert space with minimization of the semi-
norm. The limit cases and error estimates are given in Section 4. We conclude this
paper by some numerical examples illustrating the effect of tension and the
performances of the interpolant for surfaces.

2. Splines curves under tension

We first briefly review some properties concerning univariate splines under tension
(for more details on this approach, see [1–3]). This presentation differs quite a bit
from the usual definition, but provides a framework for a generalization to higher
dimension, as we will see thereafter.

Let D0ðRÞ denote the space of distributions on R; let t40 be a real number and let
H be the subspace of D0ðRÞ

H ¼ fuAD0ðRÞ; u0 and u00AL2ðRÞg ð2:1Þ
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endowed with the semi-scalar product

ðujvÞH ¼
Z þN

	N

u00ðtÞv00ðtÞ dt þ t2
Z þN

	N

u0ðtÞv0ðtÞ dt; ð2:2Þ

and the associated semi-norm jujH: The real parameter t is called a tension

parameter. Let CðRÞ and P0ðRÞ be the space of continuous functions and the space
of constant polynomials on R; respectively. The space H is a semi-Hilbert subspace
of CðRÞ (see [1–3]) and its null-space is P0ðRÞ:

Let Dt be the linear differential operator defined on D0ðRÞ by Dtð:Þ ¼ d4ð:Þ
dt4

	 t2d2ð:Þ
dt2

:

For any uAH and any compactly supported infinitely differentiable function j on
R; we have ðujjÞH ¼ /Dtu;jS ¼ /u;DtjS: A fundamental solution F of the

linear differential operator Dt is a tempered distribution on R such that, in the
distributional sense

DtF ¼ d; ð2:3Þ

as usual, d denotes the Dirac’s measure at the origin. It is obvious that such a
fundamental solution cannot be unique (at least up to a polynomial of degree 1). It is
easy to find out that a fundamental solution for the linear differential operator Dt is

FðtÞ ¼ 	 1

2t3
ðe	tjtj þ tjtjÞ: ð2:4Þ

Let us notice that F is a function of class C2ðRÞ which generates a tempered
distribution that we still denote by F: We have [1–3]:

Theorem 1. Let fðt1; f1Þ;y; ðtN ; fNÞgCR2 be any set of real data with tiatj for iaj;

let F be the function given by (2.4). Then, there is a unique function stAH minimizing

the semi-norm j : jH of H; subject to the interpolation constraints stðtiÞ ¼ fi for i ¼
1;y;N: The function st has explicitly the following form:

stðtÞ ¼
XN

i¼1

liFðt 	 tiÞ þ lNþ1; ð2:5Þ

where the coefficients l1;y; lNþ1 are solutions of the nonsingular linear system

Fðt1 	 t1Þ ? Fðt1 	 tNÞ 1

^ & ^ ^

FðtN 	 t1Þ ? FðtN 	 tNÞ 1

1 ? 1 0

0
BBB@

1
CCCA

l1

^

lN

lNþ1

0
BBB@

1
CCCA ¼

f1

^

fN

0

0
BBB@

1
CCCA: ð2:6Þ

Let C0ðRÞ be the dual space of CðRÞ; namely the space of compactly supported

Radon measures and let P>
0 ðRÞ be the subspace orthogonal to P0ðRÞ in the

distributional sense. The semi-Hilbertian kernel of H is the mapping H :

C0ðRÞ-P>
0 ðRÞ-H such that HðmÞ ¼ m � F for mAC0ðRÞ-P>

0 ðRÞ: According to
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[18], this semi-Hilbertian kernel satisfies

/m; m � FS ¼
Z Z

Fðt 	 sÞ dmðtÞ dmðsÞX0;

for all Radon measures m compactly supported and such that
R

dmðtÞ ¼ 0:

Specifically, given any set of p distinct points x1;y; xp in R and any discrete

measure m ¼
Pp

i¼1cidxi
such that

Pp
i¼1ci ¼ 0 (dxi

is the Dirac’s measure at xi), we

have
Pp

i¼1

Pp
j¼1cicjFðxi 	 xjÞX0: Therefore (see Section 3), the function F is a

conditionally positive definite function on R of order 1.

3. Multi-dimensional case

Let mX1 be a positive integer and let Pm	1ðRdÞ denote the space of polynomials

on Rd of degree at most m 	 1 whose dimension is denoted dðmÞ:
Let us give an arbitrary finite set A ¼ fx1;y; xNgCRd of distinct interpolation

points and a set of real data f f1;y; fNg: We assume that NXdðmÞ and that A

contains a Pm	1ðRdÞ–unisolvent set (i.e., if pAPm	1ðRdÞ and if for all aAA; pðaÞ ¼
0; then p 
 0). Let ðq1;y; qdðmÞÞ be a basis of Pm	1ðRdÞ and jj : jj be the Euclidean

norm on Rd : We consider the following function:

ftðtÞ ¼ 	 1

2t3
ðe	t

ffiffi
t

p
þ t

ffiffi
t

p
Þ; tARþ; ð3:1Þ

and the following radial function

FtðxÞ ¼ ftðjjxjj
2Þ ¼ 	 1

2t3
ðe	tjjxjj þ tjjxjjÞ; xARd : ð3:2Þ

Let

At ¼ ðFtðxi 	 xjÞÞ1pi;jpN be a N � N matrix;

M ¼ ðqjðxiÞÞ 1pipN
1pjpdðmÞ

be a N � dðmÞ matrix;MT denotes the transpose of M;

O be the dðmÞ � dðmÞ zero matrix;

l ¼ ðl1;y; lNÞT and f ¼ ð f1;y; fNÞT two vectors of RN ;

and a ¼ ða1;y; adðmÞÞT be a vector of RdðmÞ:

We consider a function sA;t;m of the following form:

sA;t;mðxÞ ¼
XN

i¼1

liFtðx 	 xiÞ þ
XdðmÞ

j¼1

ajqjðxÞ; xARd : ð3:3Þ

The interpolation conditions sA;t;mðxjÞ ¼ fj; for j ¼ 1;y;N together with the

constraint
PN

i¼1 lipðxiÞ ¼ 0; for all pAPm	1ðRdÞ provide a linear system, similar to
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(2.6) obtained for the univariate case. The coefficients li and ai are solutions of

At M

MT O

� 

l

a

� 

¼

f

0

� 

; i:e:

Atlþ Ma ¼ f ;

MTl ¼ 0:

�
ð3:4Þ

Remark 1. The factor 1
2t3 which appear in (3.1) and (3.2) may be omitted, because it

will be absorbed in the coefficients of the first linear combination of the right-hand
side of (3.3). In one dimension this factor is only obtained to satisfy condition (2.3).
Furthermore, according to our numerical experience, the RBFTs have the same

behavior using the radial function Ft with or without the factor 1
2t3: In this paper, we

consider the radial function Ft as it is written in (3.2), i.e. with the factor 1
2t3:

From [14], a sufficient condition for the linear system (3.4) to be nonsingular for
any set of interpolation data points is for Ft to be a conditionally strictly positive

definite function of order m on Rd : We recall the following

Definition 1. A continuous real valued function F defined on Rd is conditionally

positive definite of order m on Rd ; if for any positive integer p; any set of points

x1;y; xpARd and any real-vector c ¼ ðc1;y; cpÞARp such that
Pp

i¼1cix
a
i ¼ 0 for all

jajom; we haveXp

i¼1

Xp

j¼1

cicjFðxi 	 xjÞX0: ð3:5Þ

When the right-hand side of (3.5) is 40; with ca0 and for any configuration of

points, the function F is conditionally strictly positive definite of order m on Rd :

The following theorem of Micchelli [14] (completed by Guo et al. [8]) gives a nice

characterization for radial functions to be conditionally positive definite on Rd for all
integer dX1:

Theorem 2 (Guo et al. [8], Micchelli [14]). Given g : ½0;NÞ-R; the radial function

GðxÞ ¼ gðjjxjj2Þ is a conditionally strictly positive definite function of order m on Rd for

all integer dX1 if and only if gAC½0;NÞ-CNð0;NÞ and

ð	1Þmþk
gðmþkÞðtÞ40; for all t40 and k ¼ 0; 1; 2;y

We obtain the following:

Theorem 3. The function Ft defined on Rd by

FtðxÞ ¼ 	 1

2t3
ðe	tjjxjj þ tjjxjjÞ

is conditionally strictly positive of order mX1 on Rd for all integer dX1:
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Proof. It is obvious to see that the function ft given by (3.1) belongs to
C½0;NÞ-CNð0;NÞ: In order to obtain the result, we only have to prove that the

function ft satisfies the condition ð	1ÞkfðkÞ
t ðtÞ40 for all t40 and for all integer

kX1: Let c0;1 ¼ 1; c0;2 ¼ c1;2 ¼ 1; c0;3 ¼ c1;3 ¼ 1 and c2;3 ¼ 2
3
; then for t40 we

successively have

ft
0ðtÞ ¼ 	 1

22t2t1=2et
ffiffi
t

p ½et
ffiffi
t

p
	 c0;1�;

fð2Þ
t ðtÞ ¼ 1

23t2t3=2et
ffiffi
t

p ½et
ffiffi
t

p
	 c0;2 	 c1;2ðt

ffiffi
t

p
Þ�;

fð3Þ
t ðtÞ ¼ 	 1:3

24t2t5=2et
ffiffi
t

p et
ffiffi
t

p
	 c0;3 	 c1;3ðt

ffiffi
t

p
Þ 	 c2;3

ðt
ffiffi
t

p
Þ2

2!

" #
:

By induction, we suppose that for all integer k41; there exists coefficients cj;k

satisfying 0ocj;kp1 for j ¼ 0;y; k 	 1; such that

fðkÞ
t ðtÞ ¼ ð	1Þkð1:3yð2k 	 3ÞÞ

2kþ1t2tð2k	1Þ=2et
ffiffi
t

p et
ffiffi
t

p
	
Xk	1

j¼0

cj;k
ðt

ffiffi
t

p
Þj

j!

" #
; 8t40: ð3:6Þ

Calculating the derivative of fðkÞ
t ; we obtain

fðkþ1Þ
t ðtÞ ¼ ð	1Þkþ1ð1:3yð2k 	 3Þð2k 	 1ÞÞ

2kþ2t2tð2kþ1Þ=2et
ffiffi
t

p et
ffiffi
t

p
	
Xk	1

j¼0

cj;k
ðt

ffiffi
t

p
Þj

j!

"

	
Xk	1

j¼0

cj;k

2k 	 1

ðt
ffiffi
t

p
Þjþ1

j!
þ
Xk	1

j¼1

cj;k

2k 	 1

ðt
ffiffi
t

p
Þj

ð j 	 1Þ!

#
; 8t40: ð3:7Þ

Setting

c0;kþ1 ¼ c0;k ¼ 1;

cj;kþ1 ¼ 1 	 j

2k 	 1

� 

cj;k þ

j

2k 	 1
cj	1;k; for 1pjpk 	 1;

ck;kþ1 ¼ k

2k 	 1
ck	1;k ¼ k!

1:3yð2k 	 1Þ;

8>>>>><
>>>>>:

expression (3.7) may be arranged in the following form:

fðkþ1Þ
t ðtÞ ¼ ð	1Þkþ1ð1:3yð2k 	 1ÞÞ

2kþ2t2tð2kþ1Þ=2et
ffiffi
t

p et
ffiffi
t

p
	
Xk

j¼0

cj;kþ1
ðt

ffiffi
t

p
Þj

j!

" #
; 8t40: ð3:8Þ

Since 0ocj;kp1 we also obtain 0ocj;kþ1p1: Thus ð	1ÞkfðkÞ
t ðtÞ40; for all t40;

therefore Ft is conditionally strictly positive definite function of order mX1: &

Now, we will discuss the associated variational problem with the construction of
the corresponding semi-Hilbert space with minimization of the semi-norm.

Let CðRdÞ be the space of continuous functions on Rd ; let C0ðRdÞ denote the

topological dual space of CðRdÞ; which is the space of all compactly supported
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Radon measures on Rd and let E
�

m ¼ CðRdÞ=Pm	1ðRdÞ be the quotient of the space

CðRdÞ by Pm	1ðRdÞ: The quotient space E
�

m is a locally convex topological vector

space and its topological dual E0
�

m is naturally isomorphic to the space of all

compactly supported Radon measures which are orthogonal, in the distributional

sense, to Pm	1ðRdÞ: Then both spaces can be identified and we can write

E 0
�

m ¼ mAC0ðRdÞ:
Z

xa dmðxÞ ¼ 0 for all jajom

� �

We directly obtain from [12,13] and [18]

Theorem 4. There is a unique semi-Hilbert subspace Ht;m of CðRdÞ equipped with a

semi-inner product ð: j :ÞHt;m
and its associated semi-norm j : jHt;m

such that

(1) The null-space of ðHt;m; j : jHt;m
Þ is Pm	1ðRdÞ:

(2)
H
�

t;m ¼ Ht;m=Pm	1ðRdÞ equipped with the scalar product ðu� j v
�Þ

H
�

t;m
¼ ðujvÞHt;m

is

a Hilbert space continuously embedded in E
�

m:

(3)
The mapping H : E0

�
m-E

�
m defined by Hm ¼ m � Ft

zfflffl}|fflffl{�

is the unique Hilbertian

kernel of H
�

t;m with respect to E
�

m: Furthermore, these properties uniquely

determine Ht;m and ð: j :ÞHt;m
:

Remark 2. We note that the space Ht;m and its semi-inner product ð: j :ÞHt;m
; given in

Theorem 4, depend on the parameter t; so the subscript t attached to the notations is
to emphasize this dependence. The space Ht;m is described in Theorem 4 using a

Hilbertian kernel tool. An explicit construction of this space, as a Sobolev space
type, unless for d ¼ 1 is not easy to carry out here. Some investigations in this
direction are in progress.

Since A contains a Pm	1ðRdÞ	unisolvent set, then the following bilinear form:

/ujvSHt;m
¼ ðujvÞHt;m

þ
X
aAA

uðaÞvðaÞ; for u; vAHt;m ð3:9Þ

is an inner product on Ht;m: We directly obtain from Theorem 4 and the closed

graph theorem, the following
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Corollary 1. The space Ht;m with the inner product (3.9) and the associated norm

denoted by jjujjHt;m
is a Hilbert subspace of CðRdÞ; continuously embedded in CðRdÞ

(that is Ht;m is a Hilbertian subspace of CðRdÞ in the sense of Schwartz).

We can now state the following main theorem

Theorem 5. Let N be an integer such that NXdðmÞ; let us give an arbitrary finite set

A ¼ fx1;y; xNg of distinct points in Rd and a set of real data f f1;y; fNg: We

assume that A contains a Pm	1ðRdÞ–unisolvent. Then, there exists one and only one

function sA;t;m in Ht;m satisfying the interpolating conditions sA;t;mðxiÞ ¼ fi for i ¼
1;y;N and minimizing the semi-norm j : jHt;m

: It has the form shown in (3.3) while the

coefficients li; aj; for i ¼ 1;y;N þ 1 and j ¼ 1;y; dðmÞ are solutions of the

nonsingular linear system (3.4).

Proof. (a) Existence and unicity: Since, Dirac’s measure dxi
at the point xi is a linear

continuous functional over ðHt;m; jj : jjHt;m
Þ; it follows that the set Ii :¼ fuAHt;m :

uðxiÞ ¼ fig ¼ d	1
xi
f fig; for i ¼ 1;y;N; is a closed subset of ðHt;m; jj : jjHt;m

Þ: Then,

the set IA :¼
TN

i¼1 Ii ¼ fuAHt;m : uðxiÞ ¼ fi; i ¼ 1;y;Ng is also a closed subset of

ðHt;m; jj : jjHt;m
Þ and it is obviously a convex set. Now by the projection theorem we

obtain existence and uniqueness of the projection of 0Ht;m on IA; which is the unique

element of IA of minimal semi-norm j : jHt;m
: Let us call sA;t;m this unique element.

(b) Form of the solution: We have /sA;t;mjuSHt;m
¼ 0 for all uAHt;m vanishing on

A; which also implies that ðsA;t;mjuÞHt;m
¼ 0 for all uAHt;m vanishing on A: Let us

choose an arbitrary set of functions LiAHt;m; such that LiðxiÞ ¼ 1 and LiðxjÞ ¼ 0

for all jai: For any vAHt;m the function u ¼ v 	
PN

i¼1vðxiÞLi vanishes on A;

therefore ðsA;t;mjuÞHt;m
¼ 0; and so

ðsA;t;mjvÞHt;m
¼
XN

i¼1

ðsA;t;m jLiÞHt;m
vðxiÞ ¼

XN

i¼1

livðxiÞ ¼ /m; vS; 8vAHt;m;

where m ¼
PN

i¼1 lidxi
and li ¼ ðsA;t;mjLiÞHt;m

: The support of m is A and /m; qS ¼

ðsA;t;mjqÞHt;m
¼ 0; 8qAPm	1ðRdÞ: Then, using Theorem 4, we can write /m; vS ¼

ðv� jHmÞ
H
�

t;m
¼ ðv� j m � Ft

zfflffl}|fflffl{�

Þ
H
�

t;m
¼ ðvjm � FtÞHt;m

; 8vAHt;m: Therefore, ðsA;t;m 	 m �

FtjvÞHt;m
¼ 0; 8vAHt;m; then there is a polynomial p such that sA;t;m ¼ m � Ft þ p:

(c) The nonsingularity of the linear system (3.4) comes from Theorem 3.7 in [16]
and the conditionally strictly positive definiteness of Ft: &
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4. Error estimates and limit cases

In this section, we first give an estimation of the local error of interpolation. Let O
be an open subset of Rd : We say that O satisfies the cone property if there exist r40

and y40 such that for any tAO there exists a unit vector xðtÞARd such that the cone

cðt; xðtÞ; y; rÞ :¼ ft þ lm; mARd ; jjmjj ¼ 1; m�xðtÞXcos y; 0plprg

is entirely contained within O:

Theorem 6. Let O be an open, bounded connected subset of Rd having the cone

property. For any h40; let Ah be a finite subset of distinct points in O which contains a

Pm	1ðRdÞ-unisolvent subset with suptA %O infaAAh
jjt 	 ajj ¼ h: For each fAHt;m; let

sAh;t;m be the unique element of Ht;m of minimal semi-norm j : jHt;m
which coincides

with f on Ah: There exists a constant c40; independent of h and t; such that

jf ðxÞ 	 sA;t;mðxÞjp
cffiffiffi
t

p hjf jHt;m
; for all xAO:

Proof. The set O is an open, bounded connected subset of Rd having the cone
property. Then, a direct application of Theorem 3.6 in [11] proves that there exists
h040 and constants c1; c240; both independent of h and ft (this implies that c1 and
c2 do not depend on t), such that

jf ðxÞ 	 sAh;t;mðxÞj
2p

1

2t3
c2
1 max

0ptpc2h
je	tt þ tt 	 1j jf j2Ht;m

for all xAO and hoh0: Now,

max
0ptpc2h

je	tt þ tt 	 1jp1
2
ðtc2hÞ2:

Setting c ¼ c1c2

2
gives the required result. &

Remark 3. The error estimate given by Theorem 6 suggests, as expected, that the
pointwise error goes to 0 as h-0; namely the pointwise error goes to 0 when Ah

becomes more and more dense in an open set O: Unfortunately, it does not give any
hint of what happens when the parameter t goes to 0 or to N; because of the factor
jf jHt;m

which depends on t and whose behavior with t is unknown.

It is why we now investigate the behavior of the radial basis function under tension
when t-0 or t-N: We first recall two examples of pseudo-polynomial

ðm; sÞ	splines [6]. Let m be an integer and s a real number such that 	m þ
d
2
osod

2
; which is the required condition for the space of pseudo-polynomial splines

to be a subspace of continuous functions on Rd : The generating radial basis function
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of ðm; sÞ–splines is

Km;sðxÞ ¼
Cm;sjjxjj2mþ2s	d lnðjjxjjÞ if 2m þ 2s 	 dA2N�;

Cm;sjjxjj2mþ2s	d else;

(
ð4:1Þ

where Cm;s is a known constant. The function Km;s generates a tempered distribution

on Rd also denoted by Km;s satisfying on Rd the relation

DmþsKm;s ¼ d ðDirac0s measure at the originÞ; ð4:2Þ

where Dmþs is the Laplace operator of order m þ s; with an appropriate extension of
the usual iterated Laplacean operator to a real order, whenever s is a non integer
number (see [3]).

Remark 4. Let us recall that the function given by (4.1) can be replaced by any other

function which generates a tempered distribution on Rd satisfying, up to a
multiplicative factor, relation (4.2).

Let ðq1;y; qdþ1Þ be the canonical basis of P1ðRdÞ; with qjðxÞ ¼ xð jÞ for j ¼
1;y; d and qdþ1ðxÞ ¼ 1 where x ¼ ðxð1Þ;y; xðdÞÞTARd : We consider here two of the
ðm; sÞ–splines. The first one is for m ¼ 1 and s ¼ ðd 	 1Þ=2: We obtain the
ð1; ðd 	 1Þ=2Þ–spline which, in this case, is the pseudo-linear spline of the form

sNðxÞ ¼
PN

i¼1aijjx 	 xijj þ aNþ1; subject to
PN

i¼1 ai ¼ 0: For the second example, we

choose m ¼ 2 and s ¼ ðd 	 1Þ=2 again. We obtain the ð2; ðd 	 1Þ=2Þ–spline which, in

this case, is the pseudo-cubic spline s0ðxÞ ¼
PN

i¼1 bijjx 	 xijj3 þ
Pdþ1

i¼1 ciq1ðxÞ; with

the condition
PN

i¼1bipðxiÞ ¼ 0; 8pAP1ðRdÞ: Another interesting case of ðm; sÞ–
spline is obtained for the choice m ¼ 2 and s ¼ ðd 	 2Þ=2; in this case, the

ð2; ðd 	 2Þ=2Þ–spline is given by stpsðxÞ ¼
PN

i¼1 dijjx 	 xijj2 lnðjjx 	 xijjÞ þPdþ1
i¼1 eiq1ðxÞ; with the condition

PN
i¼1 dipðxiÞ ¼ 0; 8pAP1ðRdÞ: In particular, we

obtain in R2 the well-known thin plate spline (TPS), the term of TPS being justified
by the fact that, in two dimension, the ð2; 0Þ–spline models some physical properties
of thin plate. In the literature, many authors use also the term of TPS, for any dX2:

Proposition 1. Let A ¼ fx1;y; xNg be a finite set of distinct points in Rd which

contains a P1ðRdÞ-unisolvent subset, let f ¼ ð f1;y; fNÞTARN and let s0 and sN be

respectively the pseudo-cubic and the pseudo-linear splines satisfying the interpolating

conditions s0ðxiÞ ¼ sNðxiÞ ¼ sA;t;1ðxiÞ ¼ sA;t;2ðxiÞ ¼ fi for i ¼ 1;y;N: Then, for all

xARd ; sA;t;2ðxÞ converges to s0ðxÞ as t-0 and sA;t;1ðxÞ converges to sNðxÞ as t-N:

Proof. Let CtðxÞ ¼ 	 1
2t3ð1 þ 1

2
jjtxjj2 	 1

6
jjtxjj3Þ: For a fixed xARd ; by expanding the

function Ft; given by (3.2), we obtain

FtðxÞ ¼ CtðxÞ þ
1

2t3
XN
k¼4

ð	tjjxjjÞk

k!
:

ARTICLE IN PRESS
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The function sA;t;2 is given by sA;t;2ðxÞ ¼
PN

i¼1 li;tFtðx 	 xiÞ þ
Pdþ1

i¼1 ai;tqiðxÞ; it

follows that

sA;t;2ðxÞ ¼
XN

i¼1

li;tCtðx 	 xiÞ

þ
Xdþ1

i¼1

ai;tqiðxÞ þ
1

2t3
XN

i¼1

li;t

XN
k¼4

ð	tjjx 	 xijjÞk

k!

 !
: ð4:3Þ

Let

Et ¼
1

2t3
XN
k¼4

ð	tjjxi 	 xjjjÞk

k!

 !
1pi;jpN

; Bt ¼ ðCtðxi 	 xjÞÞ1pi;jpN

and A ¼ ðjjxi 	 xj jj3Þ1pi;jpN be the N � N matrices. The matrix At given in the linear

system (3.4), may be written as At ¼ Bt þ Et: We have jjEtjjN-0 as t-0 and

li;t B
t-0

gi;t; for i ¼ 1;y;N and aj;t B
t-0

bj;t for j ¼ 1;y; d þ 1; where the vectors

gt ¼ ðg1;t;y; gN;tÞT and bt ¼ ðb1;t;y; bdþ1;tÞT are obtained by solving the following

nonsingular linear system:

Btgt þ Mbt ¼ f

MTgt ¼ 0

�
as t-0: ð4:4Þ

The nonsingularity of the linear system (4.4) is guaranteed by the fact that the

function Ct also generates a tempered distribution on Rd which is, up to a

multiplicative factor, a fundamental solution of the operator Dmþs for m ¼ 2 and

s ¼ ðd 	 1Þ=2: In fact, we have DId	1
2

mþ2½1 þ 1
2
jjtxjj2� ¼ DId	1

2
m½D2ð1 þ t2

2
jjxjj2Þ� ¼ 0;

thus D
dþ3
2 Ct ¼ 1

12
D

dþ3
2 ½jjxjj3� ¼ 1

12C
2;

d	1
2

d; where C
2;

d	1
2

is given in (4.1).

Let Btgt ¼ ððBtgtÞ1;y; ðBtgtÞNÞ
T ; we have

ðBtgtÞj ¼
XN

i¼1

gi;tCtðxj 	 xiÞ ¼ 	 1

2t3
XN

i¼1

gi;t 1 þ t2

2
jjxj 	 xijj2 	

t3

6
jjxj 	 xijj3

�  
:

Since jjxj 	 xijj2 ¼ jjxjjj2 	 2xT
j xi þ jjxijj2 and together with the orthogonality

conditions
PN

i¼1 gi;t ¼ 0 and
PN

i¼1 gi;txi ¼ 0; we obtain that

ðBtgtÞj ¼
1

12

XN

i¼1

gi;tjjxj 	 xijj3 	 yt; where yt ¼
1

4t

XN

i¼1

gi;tjjxijj2:

Let edþ1 ¼ ð0;y; 0; 1ÞT ; bt ¼ 1
12
gt and ct ¼ bt 	 ytedþ1; it follows that the linear

system (4.4) becomes

Abt þ Mct ¼ f ;

MT bt ¼ 0:

�
ð4:5Þ

ARTICLE IN PRESS
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The coefficients bt and ct obtained by solving the nonsingular linear system (4.5) are

exactly the coefficients b ¼ ðb1;y; bNÞT and c ¼ ðc1;y; cdþ1ÞT of the pseudo-cubic
spline s0 satisfying the interpolating conditions s0ðxiÞ ¼ fi for i ¼ 1;y;N: It follows

that bt B
t-0

b; ct B
t-0

c and yt B
t-0

y :¼ 3
t

PN
i¼1 bijjxijj2; which gives

lt B
t-0

12b and at B
t-0

c þ yedþ1: ð4:6Þ

From (4.3), again by using the relation jjx 	 xijj2 ¼ jjxjj2 	 2xT xi þ jjxijj2 together

with the orthogonality conditions
PN

i¼1 li;t ¼ 0 and
PN

i¼1 li;txi ¼ 0; we obtain

sA;t;2ðxÞ ¼
1

12

XN

i¼1

li;tjjx 	 xijj3 þ
Xdþ1

i¼1

ai;tqiðxÞ

	 1

4t

XN

i¼1

li;tjjxijj2 þ
1

2t3
XN

i¼1

li;t

XN
k¼4

ð	tjjx 	 xijjÞk

k!

 !
: ð4:7Þ

Therefore, using (4.6), we obtain

sA;t;2ðxÞ B
t-0

XN

i¼1

bijjx 	 xijj3 þ
Xdþ1

i¼1

ciqiðxÞ þ
6

t3
XN

i¼1

bi

XN
k¼4

ð	tjjx 	 xijjÞk

k!

 !
;

namely,

sA;t;2ðxÞ B
t-0

s0ðxÞ þ
6

t3
XN

i¼1

bi

XN
k¼4

ð	tjjx 	 xijjÞk

k!

 !
:

On the other hand, when t-N; we get FtðxÞ B
t-N

FNðxÞ :¼ 	jjtxjj and we have

FN ¼ cK
1;

d	1
2

: Then by a similar argument, we obtain that sA;t;1ðxÞ B
t-N

sNðxÞ: &

5. Numerical examples

In order to illustrate the behavior of the interpolant with our radial basis function
under tension (RBFT), we include some examples. We fix d ¼ 2 and we choose
m ¼ 1 and 2, respectively. The first example is the interpolation with RBFT at
Franke’s data which are scattered data points xi ¼ ðsi; tiÞ in the unit square ½0; 1� �
½0; 1� and fi for i ¼ 1;y;N ¼ 33 are given values in R: The Franke’s data are taken
from Franke [7] and Franke and Nielson [15, Table 1], they were used by the authors
for testing their method of construction of interpolant surfaces with the concept of
tension.

Figs. 1 and 2, show the behavior of the RBFT interpolating the Franke’s data for
small (t ¼ 0:1), middle (t ¼ 50) and large (t ¼ 1000) values of the parameter of
tension with m ¼ 1 and 2, respectively. In order to have a comparison between the
RBFT and the pseudo-polynomial splines, we gave, in Fig. 3, the plots of the thin
plate spline, pseudo-cubic spline and pseudo-linear spline interpolating the same
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Fig. 1. RBFT interpolating the Franke’s data with N ¼ 33 and m ¼ 1:

Fig. 2. RBFT interpolating the Franke’s data with N ¼ 33 and m ¼ 2:
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data together with RBFT. This example illustrates the practical effects of the
parameter t of tension on the behaviour of the surface.

The second example is the interpolation of the usual well-known test function [15],
given below. Fig. 4, shows the plot of the test function

f ðx; yÞ ¼ 3
4

e	
ð9x	2Þ2þð9y	2Þ2

4 þ 3
4

e	
ð9x	1Þ2

49
	ð9y	1Þ2

10 	 2
10

e	ð9x	4Þ2	ð9y	7Þ2

þ 1
2

e	
ð9x	7Þ2þð9y	3Þ2

4 :

We randomly generated scattered data points xi ¼ ðsi; tiÞ for i ¼ 1;y;N in the
unit square domain ½0; 1� � ½0; 1� and test the interpolation of the test function for
different values of t and different number N of scattered data points. For the sake of
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Fig. 3. Pseudo-polynomial splines interpolating the Franke’s data with N ¼ 33:

Fig. 4. Franke’s test function and its contour.
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brevity, we gave here only two values of N; one of a small value (N ¼ 35) and the
other one of a large value (N ¼ 2000). We chose the values of the parameter of
tension, to be small (t ¼ 0:01), middle (t ¼ 50) and large (t ¼ 1000), respectively.
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Fig. 5. RBFT interpolating f with N ¼ 35 and m ¼ 1:

Fig. 6. RBFT interpolating f with N ¼ 35 and m ¼ 2:
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Figs. 5 and 7, on one hand, and Figs. 6 and 8 on the other hand, show the behavior
of the RBFT interpolation for m ¼ 1 and 2, respectively.

We observe that in both cases (m ¼ 1 and 2), the RBFT behave like the pseudo-
cubic spline when t is small, and like the pseudo-linear spline for large value of t: We
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Fig. 7. RBFT interpolating f with N ¼ 2000 and m ¼ 1:

Fig. 8. RBFT interpolating f with N ¼ 2000 and m ¼ 2:
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have noticed that the parameter t does not have any visual effect when N becomes
large, which is a direct consequence of the fact that the RBFT, like the pseudo-
polynomial splines, converges to the underlying function f when the set of the
interpolating points becomes more and more dense in an open set O; which is the
main assertion of Theorem 6. As we were able to observe, there is only a slight
difference between the two cases m ¼ 1 or m ¼ 2: Choosing m ¼ 1 or m ¼ 2; does
not either seriously affect the behavior of the RBFT nor seriously modify the
accuracy of the interpolation.

In order to provide some additional light on the effects of the parameter t; we
examined the root-mean-square (RMS) errors between the RBFT and the function
test together with the pseudo-polynomial splines, for various value of t: We choose
an uniform grid of n ¼ 100 � 100 points ðui; viÞ on ½0; 1� � ½0; 1�; the RMSðg; hÞ error

ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

values of τ  

va
lu

es
 o

f R
M

S
 e

rr
or

RMS error between the RBFT  (with m=1,  N=25) and

test function
pseudo-linear
pseudo-cubic
TPS

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

values of τ  

va
lu

es
 o

f R
M

S
 e

rr
or

RMS error between the RBFT  (with m=1,  N=50) and

test function
pseudo-inear
pseudo-cubic
TPS

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

values of τ  

va
lu

es
 o

f R
M

S
 e

rr
or

RMS error between the RBFT  (with m=1,  N=100) and

test function
pseudo-linear
pseudo-cubic
TPS

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
x 10 -3

values of τ  

va
lu

es
 o

f R
M

S
 e

rr
or

RMS error between the RBFT  (with m=1,  N=1000) and

test function
pseudo-linear
pseudo-cubic
TPS

N = 25 N = 50

N = 100 N = 1000

Fig. 9. RMS errors between the RBFT (with m ¼ 1) and the test function, together with the pseudo-

polynomial splines.
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between two functions g and h is computed at the grid points by

ðRMSÞðg; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
jgðui; viÞ 	 hðui; viÞj2

r
:

In Figs. 9 and 10, we have plotted, the root-mean-square errors
t-ðRMSÞð f ; sA;t;mÞ; t-ðRMSÞðs0; sA;t;mÞ; t-ðRMSÞðsN; sA;t;mÞ and

t-ðRMSÞðstps; sA;t;mÞ as functions involving the values of t; where sA;t;m; s0; sN
and stps are the RBFT, the pseudo-cubic, the pseudo-linear and the TPS

interpolating the test function f on a same set A of N scattered data points. The
value of the parameter t is incremented from 0:1 to 50 and the curves of Figs. 9 and
10 are computed point by point. We observe that, ðRMSÞðs0; sA;t;mÞ and

ðRMSÞðsN; sA;t;mÞ become more and more small as t becomes more and more

small and large, respectively.
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Fig. 10. RMS errors between the RBFT (with m ¼ 2) and the test function, together with the pseudo-

polynomial splines.
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A critical problem using the RBFT method is obviously in the evaluation of an
optimal tension parameter t or at least to find a way which allows the user to choose
a suitable value of the tension parameter in order to obtain an expected behavior for
the resulting surface. This certainly depends on the geometry of the scattered data
interpolating points. It seems also that some cross validation technique might help in
this case and this will be investigated elsewhere. The Table 1 gives an experimental
estimation of the optimal tension parameter topt together with the corresponding

ðRMSÞð f ; sA;topt;mÞ error. The Table 2, gives the ðRMSÞð f ; s0Þ; ðRMSÞð f ; sNÞ and

ðRMSÞð f ; stpsÞ errors for the pseudo-polynomial splines. We observed, that the

RBFT with the empirical optimal value of the parameter t has a better RMS error
than the pseudo-polynomial splines. It is also interesting to note that there is a value
of t for the ðRMSÞðstps; sA;t;mÞ error to be minimal, namely there is a value of t such

that the RBFT gives a ‘‘best approximation’’ of the TPS.
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Table 1

The RMS error for RBFT with optimal t

m ¼ 1 m ¼ 2

N toptimal RMS error N toptimal RMS error

25 0.01 3.8711e-2 25 0.01 3.8710e-2

50 11.01 1.4703e-2 50 10.51 1.4606e-2

100 0.01 4.6971e-3 100 0.01 4.6963e-3

1000 6.011 6.8685e-5 1000 6.01 4.6449e-5

Table 2

The RMS error for Pseudo-polynomial splines

Pseudo-cubic Thin plate Pseudo-linear

N RMS error N RMS error N RMS error

25 3.8709e-2 25 4.9840e-2 25 7.2336e-2

50 2.2211e-2 50 1.7708e-2 50 3.4302e-2

100 4.6955e-3 100 1.2055e-2 1000 2.9474e-2

1000 2.3199e-4 100 1.8331e-4 1000 1.9306e-3
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